资源论文MAXIMUM LIKELIHOOD CONSTRAINT INFERENCEFOR INVERSE REINFORCEMENT LEARNING

MAXIMUM LIKELIHOOD CONSTRAINT INFERENCEFOR INVERSE REINFORCEMENT LEARNING

2020-01-02 | |  85 |   47 |   0

Abstract

While most approaches to the problem of Inverse Reinforcement Learning (IRL) focus on estimating a reward function that best explains an expert agent’s policy or demonstrated behavior on a control task, it is often the case that such behavior is more succinctly represented by a simple reward combined with a set of hard constraints. In this setting, the agent is attempting to maximize cumulative rewards subject to these given constraints on their behavior. We reformulate the problem of IRL on Markov Decision Processes (MDPs) such that, given a nominal model of the environment and a nominal reward function, we seek to estimate state, action, and feature constraints in the environment that motivate an agent’s behavior. Our approach is based on the Maximum Entropy IRL framework, which allows us to reason about the likelihood of an expert agent’s demonstrations given our knowledge of an MDP. Using our method, we can infer which constraints can be added to the MDP to most increase the likelihood of observing these demonstrations. We present an algorithm which iteratively infers the Maximum Likelihood Constraint to best explain observed behavior, and we evaluate its efficacy using both simulated behavior and recorded data of humans navigating around an obstacle.

上一篇:META REINFORCEMENT LEARNING WITH AU -TONOMOUS INFERENCE OF SUBTASK DEPENDENCIES

下一篇:MULTI -AGENT REINFORCEMENT LEARNINGFOR NETWORKED SYSTEM CONTROL

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...