资源论文PREDICTION ,C ONSISTENCY, CURVATURE :R EPRESEN -TATION LEARNING FOR LOCALLY-L INEAR CONTROL

PREDICTION ,C ONSISTENCY, CURVATURE :R EPRESEN -TATION LEARNING FOR LOCALLY-L INEAR CONTROL

2020-01-02 | |  73 |   54 |   0

Abstract

Many real-world sequential decision-making problems can be formulated as optimal control with high-dimensional observations and unknown dynamics. A promising approach is to embed the high-dimensional observations into a lowerdimensional latent representation space, estimate the latent dynamics model, then utilize this model for control in the latent space. An important open question is how to learn a representation that is amenable to existing control algorithms? In this paper, we focus on learning representations for locally-linear control algorithms, such as iterative LQR (iLQR). By formulating and analyzing the representation learning problem from an optimal control perspective, we establish three underlying principles that the learned representation should comprise: 1) accurate prediction in the observation space, 2) consistency between latent and observation space dynamics, and 3) low curvature in the latent space transitions. These principles naturally correspond to a loss function that consists of three terms: prediction, consistency, and curvature (PCC). Crucially, to make PCC tractable, we derive an amortized variational bound for the PCC loss function. Extensive experiments on benchmark domains demonstrate that the new variational-PCC learning algorithm benefits from significantly more stable and reproducible training, and leads to superior control performance. Further ablation studies give support to the importance of all three PCC components for learning a good latent space for control.

上一篇:ON THE EQUIVALENCE BETWEEN NODE EMBEDDINGSAND STRUCTURAL GRAPH REPRESENTATIONS

下一篇:WHITE NOISE ANALYSIS OF NEURAL NETWORKS

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...