资源论文BAYESIAN META SAMPLING FOR FAST UNCERTAINTYA DAPTION

BAYESIAN META SAMPLING FOR FAST UNCERTAINTYA DAPTION

2020-01-02 | |  105 |   60 |   0

Abstract

Meta learning has been making impressive progress for fast model adaptation. However, limited work has been done on learning fast uncertainty adaption for Bayesian modeling. In this paper, we propose to achieve the goal by placing meta learning on the space of probability measures, inducing the concept of meta sampling for fast uncertainty adaption. Specifically, we propose a Bayesian meta sampling framework consisting of two main components: a meta sampler and a sample adapter. The meta sampler is constructed by adopting a neural-inverse-autoregressive-flow (NIAF) structure, a variant of the recently proposed neural autoregressive flows, to efficiently generate meta samples to be adapted. The sample adapter then pushes meta samples to task-specific samples, based on a newly proposed and general Bayesian sampling technique, called optimal-transport Bayesian sampling. The combination of the two components allows a simple learning procedure for the meta sampler to be developed, which can be efficiently optimized via standard back-propagation. Extensive experimental results demonstrate the efficiency and effectiveness of the proposed framework, obtaining better sample quality and faster uncertainty adaption compared to related methods.

上一篇:DEEP AUDIO PRIORS EMERGE FROMH ARMONIC CONVOLUTIONAL NETWORKS

下一篇:QUANTIFYING POINT-P REDICTION UNCERTAINTY INN EURAL NETWORKS VIA RESIDUAL ESTIMATIONWITH AN I/O KERNEL

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...