资源论文LEARNING COMPOSITIONAL KOOPMAN OPERATORSFOR MODEL -BASED CONTROL

LEARNING COMPOSITIONAL KOOPMAN OPERATORSFOR MODEL -BASED CONTROL

2020-01-02 | |  70 |   52 |   0

Abstract

Finding an embedding space for a linear approximation of a nonlinear dynamical system enables efficient system identification and control synthesis. The Koopman operator theory lays the foundation for identifying the nonlinear-to-linear coordinate transformations with data-driven methods. Recently, researchers have proposed to use deep neural networks as a more expressive class of basis functions for calculating the Koopman operators. These approaches, however, assume a fixed dimensional state space; they are therefore not applicable to scenarios with a variable number of objects. In this paper, we propose to learn compositional Koopman operators, using graph neural networks to encode the state into objectcentric embeddings and using a block-wise linear transition matrix to regularize the shared structure across objects. The learned dynamics can quickly adapt to new environments of unknown physical parameters and produce control signals to achieve a specified goal. Our experiments on manipulating ropes and controlling soft robots show that the proposed method has better efficiency and generalization ability than existing baselines.

上一篇:EMPIRICAL BAYES TRANSDUCTIVE META -L EARNINGWITH SYNTHETIC GRADIENTS

下一篇:ARE TRANSFORMERS UNIVERSAL APPROXIMATORSOF SEQUENCE -TO -SEQUENCE FUNCTIONS

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...