资源论文INDUCTIVE MATRIX COMPLETION BASED ON GRAPHN EURAL NETWORKS

INDUCTIVE MATRIX COMPLETION BASED ON GRAPHN EURAL NETWORKS

2020-01-02 | |  73 |   54 |   0

Abstract

We propose an inductive matrix completion model without using side information. By factorizing the (rating) matrix into the product of low-dimensional latent embeddings of rows (users) and columns (items), a majority of existing matrix completion methods are transductive, since the learned embeddings cannot generalize to unseen rows/columns or to new matrices. To make matrix completion inductive, most previous works use content (side information), such as user’s age or movie’s genre, to make predictions. However, high-quality content is not always available, and can be hard to extract. Under the extreme setting where not any side information is available other than the matrix to complete, can we still learn an inductive matrix completion model? In this paper, we propose an Inductive Graphbased Matrix Completion (IGMC) model to address this problem. IGMC trains a graph neural network (GNN) based purely on local subgraphs around (user, item) pairs generated from the rating matrix and maps these subgraphs to their corresponding ratings. It achieves highly competitive performance with state-of-the-art transductive baselines. In addition, since IGMC is inductive, it can generalize to users/items unseen during the training (given that their ratings exist), and can even transfer to new tasks. Our transfer learning experiments show that a model trained out of the MovieLens dataset can be directly used to predict Douban movie ratings and works surprisingly well. Our work demonstrates that: 1) it is possible to train inductive matrix completion models without using side information while achieving similar or better performances than state-of-the-art transductive methods; 2) local graph patterns around a (user, item) pair are effective predictors of the rating this user gives to the item; and 3) Long-range dependencies might not be necessary for modeling recommender systems.

上一篇:MIXED -CURVATURE VARIATIONAL AUTOENCODERS

下一篇:EFFICIENT TRANSFORMERFOR MOBILE APPLICATIONS

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...