资源论文DD-PPO: LEARNING NEAR -P ERFECT POINT GOALNAVIGATORS FROM 2.5 BILLION FRAMES

DD-PPO: LEARNING NEAR -P ERFECT POINT GOALNAVIGATORS FROM 2.5 BILLION FRAMES

2020-01-02 | |  53 |   37 |   0

Abstract

We present Decentralized Distributed Proximal Policy Optimization (DD-PPO), a method for distributed reinforcement learning in resource-intensive simulated environments. DD-PPO is distributed (uses multiple machines), decentralized (lacks a centralized server), and synchronous (no computation is ever ‘stale’), making it conceptually simple and easy to implement. In our experiments on training virtual robots to navigate in Habitat-Sim (Savva et al., 2019), DD-PPO exhibits near-linear scaling – achieving a speedup of 107x on 128 GPUs over a serial implementation. We leverage this scaling to train an agent for 2.5 Billion steps of experience (the equivalent of 80 years of human experience) – over 6 months of GPU-time training in under 3 days of wall-clock time with 64 GPUs. This massive-scale training not only sets the state of art on Habitat Autonomous Navigation Challenge 2019, but essentially ‘solves’ the task – near-perfect autonomous navigation in an unseen environment without access to a map, directly from an RGB-D camera and a GPS+Compass sensor. Fortuitously, error vs computation exhibits a power-law-like distribution; thus, 90% of peak performance is obtained relatively early (at 100 million steps) and relatively cheaply (under 1 day with 8 GPUs). Finally, we show that the scene understanding and navigation policies learned can be transferred to other navigation tasks – the analog of ‘ImageNet pre-training + task-specific fine-tuning’ for embodied AI. Our model outperforms ImageNet pre-trained CNNs on these transfer tasks and can serve as a universal resource (all models + code will be publicly available).

上一篇:UNDERSTANDING AND ROBUSTIFYINGD IFFERENTIABLE ARCHITECTURE SEARCH

下一篇:MULTI -AGENT INTERACTIONS MODELING WITH COR -RELATED POLICIES

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...