资源论文IMPLEMENTING INDUCTIVE BIAS FOR DIFFERENTNAVIGATION TASKS THROUGH DIVERSE RNN ATTR -RACTORS

IMPLEMENTING INDUCTIVE BIAS FOR DIFFERENTNAVIGATION TASKS THROUGH DIVERSE RNN ATTR -RACTORS

2020-01-02 | |  74 |   45 |   0

Abstract

Navigation is crucial for animal behavior and is assumed to require an internal representation of the external environment, termed a cognitive map. The precise form of this representation is often considered to be a metric representation of space. An internal representation, however, is judged by its contribution to performance on a given task, and may thus vary between different types of navigation tasks. Here we train a recurrent neural network that controls an agent performing several navigation tasks in a simple environment. To focus on internal representations, we split learning into a task-agnostic pre-training stage that modifies internal connectivity and a task-specific Q learning stage that controls the network’s output. We show that pre-training shapes the attractor landscape of the networks, leading to either a continuous attractor, discrete attractors or a disordered state. These structures induce bias onto the Q-Learning phase, leading to a performance pattern across the tasks corresponding to metric and topological regularities. By combining two types of networks in a modular structure, we could get better performance for both regularities. Our results show that, in recurrent networks, inductive bias takes the form of attractor landscapes – which can be shaped by pre-training and analyzed using dynamical systems methods. Furthermore, we demonstrate that non-metric representations are useful for navigation tasks, and their combination with metric representation leads to flexibile multiple-task learning.

上一篇:Fantastic Generalization Measuresand Where to Find Them

下一篇:MODEL -AUGMENTED ACTOR -C RITIC :BACKPROPAGATING THROUGH PATHS

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...