资源论文SELF: LEARNING TO FILTER NOISY LABELS WITHS ELF -E NSEMBLING

SELF: LEARNING TO FILTER NOISY LABELS WITHS ELF -E NSEMBLING

2020-01-02 | |  68 |   50 |   0

Abstract

Deep neural networks (DNNs) have been shown to over-fit a dataset when being trained with noisy labels for a long enough time. To overcome this problem, we present a simple and effective method self-ensemble label filtering (SELF) to progressively filter out the wrong labels during training. Our method improves the task performance by gradually allowing supervision only from the potentially non-noisy (clean) labels and stops learning on the filtered noisy labels. For the filtering, we form running averages of predictions over the entire training dataset using the network output at different training epochs. We show that these ensemble estimates yield more accurate identification of inconsistent predictions throughout training than the single estimates of the network at the most recent training epoch. While filtered samples are removed entirely from the supervised training loss, we dynamically leverage them via semi-supervised learning in the unsupervised loss. We demonstrate the positive effect of such an approach on various image classification tasks under both symmetric and asymmetric label noise and at different noise ratios. It substantially outperforms all previous works on noise-aware learning across different datasets and can be applied to a broad set of network architectures.

上一篇:ON BONUS -BASED EXPLORATION METHODS IN THEA RCADE LEARNING ENVIRONMENT

下一篇:ATARGET-AGNOSTIC ATTACK ON DEEP MODELS :E XPLOITING SECURITY VULNERABILITIES OFT RANSFER LEARNING

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...