资源论文DISTANCE -BASED LEARNING FROM ERRORS FORC ONFIDENCE CALIBRATION

DISTANCE -BASED LEARNING FROM ERRORS FORC ONFIDENCE CALIBRATION

2020-01-02 | |  39 |   32 |   0

Abstract

Deep neural networks (DNNs) are poorly-calibrated when trained in conventional ways. To improve confidence calibration of DNNs, we propose a novel training method, distance-based learning from errors (DBLE). DBLE bases its confidence estimation on distances in the representation space. We first adapt prototypical learning for training of a classification model for DBLE. It yields a representation space where the distance from a test sample to its ground-truth class center can calibrate the model performance. At inference, however, these distances are not available due to the lack of ground-truth labels. To circumvent this by approximately inferring the distance for every test sample, we propose to train a confidence model jointly with the classification model by merely learning from mis-classified training samples, which we show to be highly beneficial for effective learning. On multiple datasets and DNN architectures, we demonstrate that DBLE outperforms alternative single-modal confidence calibration approaches. DBLE also achieves comparable performance with computationally-expensive ensemble approaches with lower computational cost and lower number of parameters.

上一篇:AMRL: AGGREGATED MEMORYF OR REINFORCEMENT LEARNING

下一篇:SELECTION VIA PROXY: EFFICIENT DATA SELECTIONFOR DEEP LEARNING

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...