资源论文VARIANCE REDUCTION WITH SPARSE GRADIENTS

VARIANCE REDUCTION WITH SPARSE GRADIENTS

2020-01-02 | |  55 |   38 |   0

Abstract

Variance reduction methods which use a mixture of large and small batch gradients, such as SVRG (Johnson & Zhang, 2013) and SpiderBoost (Wang et al., 2018), require significantly more computational resources per update than SGD (Robbins & Monro, 1951). We reduce the computational cost per update of variance reduction methods by introducing a sparse gradient operator blending the top-K operator (Stich et al., 2018; Aji & Heafield, 2017) and the randomized coordinate descent operator. While the computational cost of computing the derivative of a model parameter is constant, we make the observation that the gains in variance reduction are proportional to the magnitude of the derivative. In this paper, we show that a sparse gradient based on the magnitude of past gradients reduces the computational cost of model updates without a significant loss in variance reduction. Theoretically, our algorithm is at least as good as the best available algorithm (e.g. SpiderBoost) under appropriate settings of parameters and can be much more efficient if our algorithm succeeds in capturing the sparsity of the gradients. Empirically, our algorithm consistently outperforms SpiderBoost using various models to solve various image classification tasks. We also provide empirical evidence to support the intuition behind our algorithm via a simple gradient entropy computation, which serves to quantify gradient sparsity at every iteration.

上一篇:SEED RL: SCALABLE AND EFFICIENT DEEP -RL WITHACCELERATED CENTRAL INFERENCE

下一篇:RAPID LEARNING OR FEATURE REUSE ?T OWARDSU NDERSTANDING THE EFFECTIVENESS OF MAML

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...