资源论文A Resource-Free Evaluation Metric for Cross-Lingual Word Embeddings Based on Graph Modularity

A Resource-Free Evaluation Metric for Cross-Lingual Word Embeddings Based on Graph Modularity

2019-09-19 | |  158 |   120 |   0 0 0
Abstract Cross-lingual word embeddings encode the meaning of words from different languages into a shared low-dimensional space. An important requirement for many downstream tasks is that word similarity should be independent of language—i.e., word vectors within one language should not be more similar to each other than to words in another language. We measure this characteristic using modularity, a network measurement that measures the strength of clusters in a graph. Modularity has a moderate to strong correlation with three downstream tasks, even though modularity is based only on the structure of embeddings and does not require any external resources. We show through experiments that modularity can serve as an intrinsic validation metric to improve unsupervised cross-lingual word embeddings, particularly on distant language pairs in low-resource settings.

上一篇:Why Didn’t You Listen to Me? Comparing User Control of Human-in-the-Loop Topic Models

下一篇:Adversarial Learning of Privacy-Preserving Text Representations for De-Identification of Medical Records

用户评价
全部评价

热门资源

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Supervised Descen...

    Many computer vision problems (e.

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...