资源论文Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable

Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable

2020-01-06 | |  72 |   57 |   0

Abstract

In this paper we study convex stochastic optimization problems where a noisy objective function value is observed after a decision is made. There are many stochastic optimization problems whose behavior depends on an exogenous state variable which affects the shape of the objective function. Currently, there is no general purpose algorithm to solve this class of problems. We use nonparametric density estimation to take observations from the joint state-outcome distribution and use them to infer the optimal decision for a given query state s. We propose two solution methods that depend on the problem characteristics: function-based and gradient-based optimization. We examine two weighting schemes, kernel based weights and Dirichlet process based weights, for use with the solution methods. The weights and solution methods are tested on a synthetic multi-product newsvendor problem and the hour ahead wind commitment problem. Our results show that in some cases Dirichlet process weights offer substantial benefits over kernel based weights and more generally that nonparametric estimation methods provide good solutions to otherwise intractable problems.

上一篇:Generalized roof duality and bisubmodular functions

下一篇:Spectral Regularization for Support Estimation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...