资源论文Latent Variable Models for Predicting File Dependencies in Large-Scale Software Development

Latent Variable Models for Predicting File Dependencies in Large-Scale Software Development

2020-01-06 | |  75 |   44 |   0

Abstract

When software developers modify one or more files in a large code base, they must also identify and update other related files. Many file dependencies can be detected by mining the development history of the code base: in essence, groups of related files are revealed by the logs of previous workflows. From data of this form, we show how to detect dependent files by solving a problem in binary matrix completion. We explore different latent variable models (LVMs) for this problem, including Bernoulli mixture models, exponential family PCA, restricted Boltzmann machines, and fully Bayesian approaches. We evaluate these models on the development histories of three large, open-source software systems: Mozilla Firefox, Eclipse Subversive, and Gimp. In all of these applications, we find that LVMs improve the performance of related file prediction over current leading methods.

上一篇:Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning

下一篇:Heavy-Tailed Process Priors for Selective Shrinkage

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...