资源论文Learning Efficient Markov Networks

Learning Efficient Markov Networks

2020-01-06 | |  59 |   46 |   0

Abstract

We present an algorithm for learning high-treewidth Markov networks where inference is still tractable. This is made possible by exploiting context-specific independence and determinism in the domain. The class of models our algorithm can learn has the same desirable properties as thin junction trees: polynomial inference, closed-form weight learning, etc., but is much broader. Our algorithm searches for a feature that divides the state space into subspaces where the remaining variables decompose into independent subsets (conditioned on the feature and its negation) and recurses on each subspace/subset of variables until no useful new features can be found. We provide probabilistic performance guarantees for our algorithm under the assumption that the maximum feature length is bounded by a constant k (the treewidth can be much larger) and dependences are of bounded strength. We also propose a greedy version of the algorithm that, while forgoing these guarantees, is much more efficient. Experiments on a variety of domains show that our approach outperforms many state-of-the-art Markov network structure learners.

上一篇:Two-layer Generalization Analysis for Ranking Using Rademacher Average

下一篇:On a Connection between Importance Sampling and the Likelihood Ratio Policy Gradient

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...