资源论文Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

2020-01-06 | |  98 |   45 |   0

Abstract

In this paper, we propose a matrix-variate normal penalty with sparse inverse covariances to couple multiple tasks. Learning multiple (parametric) models can be viewed as estimating a matrix of parameters, where rows and columns of the matrix correspond to tasks and features, respectively. Following the matrix-variate normal density, we design a penalty that decomposes the full covariance of matrix elements into the Kronecker product of row covariance and column covariance, which characterizes both task relatedness and feature representation. Several recently proposed methods are variants of the special cases of this formulation. To address the overfitting issue and select meaningful task and feature structures, we include sparse covariance selection into our matrix-normal regularization via 图片.png penalties on task and feature inverse covariances. We empirically study the proposed method and compare with related models in two real-world problems: detecting landmines in multiple fields and recognizing faces between different subjects. Experimental results show that the proposed framework provides an effective and flexible way to model various different structures of multiple tasks.

上一篇:Accounting for network effects in neuronal responses using L1 regularized point process models

下一篇:Identifying Patients at Risk of Major Adverse Cardiovascular Events Using Symbolic Mismatch

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...