资源论文Exact learning curves for Gaussian process regression on large random graphs

Exact learning curves for Gaussian process regression on large random graphs

2020-01-06 | |  63 |   38 |   0

Abstract

We study learning curves for Gaussian process regression which characterise performance in terms of the Bayes error averaged over datasets of a given size. Whilst learning curves are in general very difficult to calculate we show that for discrete input domains, where similarity between input points is characterised in terms of a graph, accurate predictions can be obtained. These should in fact become exact for large graphs drawn from a broad range of random graph ensembles with arbitrary degree distributions where each input (node) is connected only to a finite number of others. Our approach is based on translating the appropriate belief propagation equations to the graph ensemble. We demonstrate the accuracy of the predictions for Poisson (Erdos-Renyi) and regular random graphs, and discuss when and why previous approximations of the learning curve fail.

上一篇:Learning Kernels with Radiuses of Minimum Enclosing Balls

下一篇:Multi-Stage Dantzig Selector

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...