资源论文Practical Large-Scale Optimization for Max-Norm Regularization

Practical Large-Scale Optimization for Max-Norm Regularization

2020-01-06 | |  63 |   41 |   0

Abstract

The max-norm was proposed as a convex matrix regularizer in [1] and was shown to be empirically superior to the trace-norm for collaborative filtering problems. Although the max-norm can be computed in polynomial time, there are currently no practical algorithms for solving large-scale optimization problems that incorporate the max-norm. The present work uses a factorization technique of Burer and Monteiro [2] to devise scalable first-order algorithms for convex programs involving the max-norm. These algorithms are applied to solve huge collaborative filtering, graph cut, and clustering problems. Empirically, the new methods outperform mature techniques from all three areas.

上一篇:Lifted Inference Seen from the Other Side : The Tractable Features

下一篇:Joint Cascade Optimization Using a Product of Boosted Classifiers

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...