资源论文A Computational Decision Theory for Interactive Assistants

A Computational Decision Theory for Interactive Assistants

2020-01-06 | |  55 |   55 |   0

Abstract

We study several classes of interactive assistants from the points of view of decision theory and computational complexity. We first introduce a class of POMDPs called hidden-goal MDPs (HGMDPs), which formalize the problem of interactively assisting an agent whose goal is hidden and whose actions are observable. In spite of its restricted nature, we show that optimal action selection in finite horizon HGMDPs is PSPACE-complete even in domains with deterministic dynamics. We then introduce a more restricted model called helper action MDPs (HAMDPs), where the assistant’s action is accepted by the agent when it is helpful, and can be easily ignored by the agent otherwise. We show classes of HAMDPs that are complete for PSPACE and NP along with a polynomial time class. Furthermore, we show that for general HAMDPs a simple myopic policy achieves a regret, compared to an omniscient assistant, that is bounded by the entropy of the initial goal distribution. A variation of this policy is shown to achieve worst-case regret that is logarithmic in the number of goals for any goal distribution.

上一篇:Worst-case bounds on the quality of max-product fixed-points

下一篇:An Approximate Inference Approach to Temporal Optimization in Optimal Control

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...