资源论文Decoding Ipsilateral Finger Movements from ECoG Signals in Humans

Decoding Ipsilateral Finger Movements from ECoG Signals in Humans

2020-01-06 | |  63 |   41 |   0

Abstract

Several motor related Brain Computer Interfaces (BCIs) have been developed over the years that use activity decoded from the contralateral hemisphere to operate devices. Contralateral primary motor cortex is also the region most severely affected by hemispheric stroke. Recent studies have identified ipsilateral cortical activity in planning of motor movements and its potential implications for a stroke relevant BCI. The most fundamental functional loss after a hemispheric stroke is the loss of fine motor control of the hand. Thus, whether ipsilateral cortex encodes finger movements is critical to the potential feasibility of BCI approaches in the future. This study uses ipsilateral cortical signals from humans (using ECoG) to decode finger movements. We demonstrate, for the first time, successful finger movement detection using machine learning algorithms. Our results show high decoding accuracies in all cases which are always above chance. We also show that significant accuracies can be achieved with the use of only a fraction of all the features recorded and that these core features are consistent with previous physiological findings. The results of this study have substantial implications for advancing neuroprosthetic approaches to stroke populations not currently amenable to existing BCI techniques.

上一篇:Effects of Synaptic Weight Diffusion on Learning in Decision Making Networks

下一篇:Collaborative Filtering in a Non-Uniform World: Learning with the Weighted Trace Norm

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...