资源论文Learning sparse dynamic linear systems using stable spline kernels and exponential hyperpriors

Learning sparse dynamic linear systems using stable spline kernels and exponential hyperpriors

2020-01-06 | |  74 |   37 |   0

Abstract

We introduce a new Bayesian nonparametric approach to identification of sparse dynamic linear systems. The impulse responses are modeled as Gaussian processes whose autocovariances encode the BIBO stability constraint, as defined by the recently introduced “Stable Spline kernel”. Sparse solutions are obtained by placing exponential hyperpriors on the scale factors of such kernels. Numerical experiments regarding estimation of ARMAX models show that this technique provides a definite advantage over a group LAR algorithm and state-of-the-art parametric identification techniques based on prediction error minimization.

上一篇:Learning Networks of Stochastic Differential Equations

下一篇:Near–Optimal Bayesian Active Learning with Noisy Observations

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...