资源论文Sparse Instrumental Variables (SPIV) for Genome-Wide Studies

Sparse Instrumental Variables (SPIV) for Genome-Wide Studies

2020-01-06 | |  83 |   49 |   0

Abstract

This paper describes a probabilistic framework for studying associations between multiple genotypes, biomarkers, and phenotypic traits in the presence of noise and unobserved confounders for large genetic studies. The framework builds on sparse linear methods developed for regression and modified here for inferring causal structures of richer networks with latent variables. The method is motivated by the use of genotypes as “instruments” to infer causal associations between phenotypic biomarkers and outcomes, without making the common restrictive assumptions of instrumental variable methods. The method may be used for an effective screening of potentially interesting genotype-phenotype and biomarker-phenotype associations in genome-wide studies, which may have important implications for validating biomarkers as possible proxy endpoints for early-stage clinical trials. Where the biomarkers are gene transcripts, the method can be used for fine mapping of quantitative trait loci (QTLs) detected in genetic linkage studies. The method is applied for examining effects of gene transcript levels in the liver on plasma HDL cholesterol levels for a sample of sequenced mice from a heterogeneous stock, with 图片.png genetic instruments and 图片.png gene transcripts.

上一篇:Batch Bayesian Optimization via Simulation Matching

下一篇:Fractionally Predictive Spiking Neurons

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...