资源论文Convex Multiple-Instance Learning by Estimating Likelihood Ratio

Convex Multiple-Instance Learning by Estimating Likelihood Ratio

2020-01-06 | |  77 |   50 |   0

Abstract

We propose an approach to multiple-instance learning that reformulates the problem as a convex optimization on the likelihood ratio between the positive and the negative class for each training instance. This is casted as joint estimation of both a likelihood ratio predictor and the target (likelihood ratio variable) for instances. Theoretically, we prove a quantitative relationship between the risk estimated under the 0-1 classification loss, and under a loss function for likelihood ratio. It is shown that likelihood ratio estimation is generally a good surrogate for the 0-1 loss, and separates positive and negative instances well. The likelihood ratio estimates provide a ranking of instances within a bag and are used as input features to learn a linear classifier on bags of instances. Instance-level classification is achieved from the bag-level predictions and the individual likelihood ratios. Experiments on synthetic and real datasets demonstrate the competitiveness of the approach.

上一篇:Double Q-learning

下一篇:Exact inference and learning for cumulative distribution functions on loopy graphs

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...