资源论文Identifying graph-structured activation patterns in networks

Identifying graph-structured activation patterns in networks

2020-01-08 | |  105 |   45 |   0

Abstract
We consider the problem of identifying an activation pattern in a complex, largescale network that is embedded in very noisy measurements. This problem is relevant to several applications, such as identifying traces of a biochemical spread by a sensor network, expression levels of genes, and anomalous activity or congestion in the Internet. Extracting such patterns is a challenging task specially if the network is large (pattern is very high-dimensional) and the noise is so excessive that it masks the activity at any single node. However, typically there are statistical dependencies in the network activation process that can be leveraged to fuse the measurements of multiple nodes and enable reliable extraction of highdimensional noisy patterns. In this paper, we analyze an estimator based on the graph Laplacian eigenbasis, and establish the limits of mean square error recovery of noisy patterns arising from a probabilistic (Gaussian or Ising) model based on an arbitrary graph structure. We consider both deterministic and probabilistic network evolution models, and our results indicate that by leveraging the network interaction structure, it is possible to consistently recover high-dimensional patterns even when the noise variance increases with network size.

上一篇:Random Conic Pursuit for Semidefinite Programming

下一篇:Robust PCA via Outlier Pursuit

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...