资源论文Learning Convolutional Feature Hierarchies for Visual Recognition

Learning Convolutional Feature Hierarchies for Visual Recognition

2020-01-08 | |  44 |   38 |   0

Abstract
We propose an unsupervised method for learning multi-stage hierarchies of sparse convolutional features. While sparse coding has become an increasingly popular method for learning visual features, it is most often trained at the patch level. Applying the resulting filters convolutionally results in highly redundant codes because overlapping patches are encoded in isolation. By training convolutionally over large image windows, our method reduces the redudancy between feature vectors at neighboring locations and improves the efficiency of the overall representation. In addition to a linear decoder that reconstructs the image from sparse features, our method trains an efficient feed-forward encoder that predicts quasisparse features from the input. While patch-based training rarely produces anything but oriented edge detectors, we show that convolutional training produces highly diverse filters, including center-surround filters, corner detectors, cross detectors, and oriented grating detectors. We show that using these filters in multistage convolutional network architecture improves performance on a number of visual recognition and detection tasks.

上一篇:Predictive Subspace Learning for Multi-view Data: a Large Margin Approach

下一篇:Tiled convolutional neural networks Quoc V. Le, Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang Wei Koh, Andrew Y. Ng

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...