资源论文An analysis on negative curvature induced by singularity in multi-layer neural-network learning

An analysis on negative curvature induced by singularity in multi-layer neural-network learning

2020-01-08 | |  38 |   38 |   0

Abstract
In the neural-network parameter space, an attractive field is likely to be induced by singularities. In such a singularity region, first-order gradient learning typically causes a long plateau with very little change in the objective function value E (hence, a flat region). Therefore, it may be confused with “attractive” local minima. Our analysis shows that the Hessian matrix of E tends to be indefinite in the vicinity of (perturbed) singular points, suggesting a promising strategy that exploits negative curvature so as to escape from the singularity plateaus. For numerical evidence, we limit the scope to small examples (some of which are found in journal papers) that allow us to confirm singularities and the eigenvalues of the Hessian matrix, and for which computation using a descent direction of negative curvature encounters no plateau. Even for those small problems, no efficient methods have been previously developed that avoided plateaus.

上一篇:Over-complete representations on recurrent neural networks can support persistent percepts

下一篇:Generating more realistic images using gated MRF’s

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...