资源论文Maximal Cliques that Satisfy Hard Constraints with Application to Deformable Object Model Learning

Maximal Cliques that Satisfy Hard Constraints with Application to Deformable Object Model Learning

2020-01-08 | |  62 |   51 |   0

Abstract

We propose a novel inference framework for finding maximal cliques in a weighted graph that satisfy hard constraints. The constraints specify the graph nodes that must belong to the solution as well as mutual exclusions of graph nodes, i.e., sets of nodes that cannot belong to the same solution. The proposed inference is based on a novel particle filter algorithm with state permeations. We apply the inference framework to a challenging problem of learning part-based, deformable object models. Two core problems in the learning framework, matching of image patches and finding salient parts, are formulated as two instances of the problem of finding maximal cliques with hard constraints. Our learning framework yields discriminative part based object models that achieve very good detection rate, and outperform other methods on object classes with large deformation.

上一篇:Bayesian Spike-Triggered Covariance Analysis

下一篇:Bayesian Partitioning of Large-Scale Distance Data

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...