资源论文The Manifold Tangent Classifier

The Manifold Tangent Classifier

2020-01-08 | |  71 |   39 |   0

Abstract

We combine three important ideas present in previous work for building classifiers: the semi-supervised hypothesis (the input distribution contains information about the classifier), the unsupervised manifold hypothesis (data density concentrates near low-dimensional manifolds), and the manifold hypothesis for classification (different classes correspond to disjoint manifolds separated by low density). We exploit a novel algorithm for capturing manifold structure (high-order contractive auto-encoders) and we show how it builds a topological atlas of charts, each chart being characterized by the principal singular vectors of the Jacobian of a representation mapping. This representation learning algorithm can be stacked to yield a deep architecture, and we combine it with a domain knowledge-free version of the TangentProp algorithm to encourage the classifier to be insensitive to local directions changes along the manifold. Record-breaking classification results are obtained.

上一篇:Optimistic Optimization of a Deterministic Function without the Knowledge of its Smoothness

下一篇:Convergent Fitted Value Iteration with Linear Function Approximation

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...