资源论文Convergent Bounds on the Euclidean Distance

Convergent Bounds on the Euclidean Distance

2020-01-08 | |  96 |   47 |   0

Abstract

Given a set V of n vectors in d-dimensional space, we provide an efficient method for computing quality upper and lower bounds of the Euclidean distances between a pair of vectors in V . For this purpose, we define a distance measure, called the MS-distance, by using the mean and the standard deviation values of vectors in V . Once we compute the mean and the standard deviation values of vectors in V in O(dn) time, the MS-distance provides upper and lower bounds of Euclidean distance between any pair of vectors in V in constant time. Furthermore, these bounds can be refined further in such a way to converge monotonically to the exact Euclidean distance within d refinement steps. An analysis on a random sequence of refinement steps shows that the MS-distance provides very tight bounds in only a few refinement steps. The MS-distance can be used to various applications where the Euclidean distance is used to measure the proximity or similarity between objects. We provide experimental results on the nearest and the farthest neighbor searches.

上一篇:Fast and Accurate k-llleans For Large Datasets

下一篇:Active Learning Ranking from Pairwise Preferences with Almost Optimal Query Complexity

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...