资源论文Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation

Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation

2020-01-08 | |  97 |   44 |   0

Abstract

Many machine learning and signal processing problems can be formulated as linearly constrained convex programs, which could be efficiently solved by the alternating direction method (ADM). However, usually the subproblems in ADM are easily solvable only when the linear mappings in the constraints are identities. To address this issue, we propose a linearized ADM (LADM) method by linearizing the quadratic penalty term and adding a proximal term when solving the subproblems. For fast convergence, we also allow the penalty to change adaptively according a novel update rule. We prove the global convergence of LADM with adaptive penalty (LADMAP). As an example, we apply LADMAP to solve lowrank representation (LRR), which is an important subspace clustering technique yet suffers from high computation cost. By combining LADMAP with a skinny SVD representation technique, we are able to reduce the complexity 图片.pngof the original ADM based method to 图片.pngwhere r and n are the rank and size of the representation matrix, respectively, hence making LRR possible for large scale applications. Numerical experiments verify that for LRR our LADMAP based methods are much faster than state-of-the-art algorithms.

上一篇:Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices

下一篇:An ideal observer model for identifying the reference frame of objects

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...