资源论文H OGWILD !: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent

H OGWILD !: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent

2020-01-08 | |  63 |   46 |   0

Abstract

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve stateof-the-art performance on a variety of machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performancedestroying memory locking and synchronization. This work aims to show using novel theoretical analysis, algorithms, and implementation that SGD can be implemented without any locking. We present an update scheme called H OGWILD ! which allows processors access to shared memory with the possibility of overwriting each other’s work. We show that when the associated optimization problem is sparse, meaning most gradient updates only modify small parts of the decision variable, then H OGWILD ! achieves a nearly optimal rate of convergence. We demonstrate experimentally that H OGWILD ! outperforms alternative schemes that use locking by an order of magnitude.

上一篇:Collective Graphical Models

下一篇:Confidence Sets for Network Structure

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...