资源论文Online Learning: Stochastic, Constrained, and Smoothed Adversaries

Online Learning: Stochastic, Constrained, and Smoothed Adversaries

2020-01-08 | |  85 |   40 |   0

Abstract

Learning theory has largely focused on two main learning scenarios: the classical statistical setting where instances are drawn i.i.d. from a fixed distribution, and the adversarial scenario wherein, at every time step, an adversarially chosen instance is revealed to the player. It can be argued that in the real world neither of these assumptions is reasonable. We define the minimax value of a game where the adversary is restricted in his moves, capturing stochastic and non-stochastic assumptions on data. Building on the sequential symmetrization approach, we define a notion of distribution-dependent Rademacher complexity for the spectrum of problems ranging from i.i.d. to worst-case. The bounds let us immediately deduce variation-type bounds. We study a smoothed online learning scenario and show that exponentially small amount of noise can make function classes with infinite Littlestone dimension learnable.

上一篇:Maximum Margin Multi-Instance Learning

下一篇:Generalized Beta Mixtures of Gaussians

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...