资源论文A Collaborative Mechanism for Crowdsourcing Prediction Problems

A Collaborative Mechanism for Crowdsourcing Prediction Problems

2020-01-08 | |  101 |   80 |   0

Abstract

Machine Learning competitions such as the Netflix Prize have proven reasonably successful as a method of “crowdsourcing” prediction tasks. But these competitions have a number of weaknesses, particularly in the incentive structure they create for the participants. We propose a new approach, called a Crowdsourced Learning Mechanism, in which participants collaboratively “learn” a hypothesis for a given prediction task. The approach draws heavily from the concept of a prediction market, where traders bet on the likelihood of a future event. In our framework, the mechanism continues to publish the current hypothesis, and participants can modify this hypothesis by wagering on an update. The critical incentive property is that a participant will profit an amount that scales according to how much her update improves performance on a released test set.

上一篇:Dimensionality Reduction Using the Sparse Linear Model

下一篇:Variance Penalizing AdaBoost

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...