资源论文Regularized Laplacian Estimation and Fast Eigenvector Approximation

Regularized Laplacian Estimation and Fast Eigenvector Approximation

2020-01-08 | |  112 |   48 |   0

Abstract

Recently, Mahoney and Orecchia demonstrated that popular diffusion-based procedures to compute a quick approximation to the first nontrivial eigenvector of a data graph Laplacian exactly solve certain regularized Semi-Definite Programs (SDPs). In this paper, we extend that result by providing a statistical interpretation of their approximation procedure. Our interpretation will be analogous to the manner in which 图片.png -regularized or 图片.png -regularized 图片.png -regression (often called Ridge regression and Lasso regression, respectively) can be interpreted in terms of a Gaussian prior or a Laplace prior, respectively, on the coefficient vector of the regression problem. Our framework will imply that the solutions to the MahoneyOrecchia regularized SDP can be interpreted as regularized estimates of the pseudoinverse of the graph Laplacian. Conversely, it will imply that the solution to this regularized estimation problem can be computed very quickly by running, e.g., the fast diffusion-based PageRank procedure for computing an approximation to the first nontrivial eigenvector of the graph Laplacian. Empirical results are also provided to illustrate the manner in which approximate eigenvector computation implicitly performs statistical regularization, relative to running the corresponding exact algorithm.

上一篇:A rational model of causal induction with continuous causes

下一篇:A More Powerful Two-Sample Test in High Dimensions using Random Projection

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...