资源论文Analytical Results for the Error in Filtering of Gaussian Processes

Analytical Results for the Error in Filtering of Gaussian Processes

2020-01-08 | |  89 |   58 |   0

Abstract

Bayesian filtering of stochastic stimuli has received a great deal of attention recently. It has been applied to describe the way in which biological systems dynamically represent and make decisions about the environment. There have been no exact results for the error in the biologically plausible setting of inference on point process, however. We present an exact analysis of the evolution of the meansquared error in a state estimation task using Gaussian-tuned point processes as sensors. This allows us to study the dynamics of the error of an optimal Bayesian decoder, providing insights into the limits obtainable in this task. This is done for Markovian and a class of non-Markovian Gaussian processes. We find that there is an optimal tuning width for which the error is minimized. This leads to a characterization of the optimal encoding for the setting as a function of the statistics of the stimulus, providing a mathematically sound primer for an ecological theory of sensory processing.

上一篇:Demixed Principal Component Analysis

下一篇:Structured sparse coding via lateral inhibition

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...