资源论文Active learning of neural response functions with Gaussian processes

Active learning of neural response functions with Gaussian processes

2020-01-08 | |  67 |   38 |   0

Abstract

A sizeable literature has focused on the problem of estimating a low-dimensional feature space for a neuron’s stimulus sensitivity. However, comparatively little work has addressed the problem of estimating the nonlinear function from feature space to spike rate. Here, we use a Gaussian process (GP) prior over the infinitedimensional space of nonlinear functions to obtain Bayesian estimates of the “nonlinearity” in the linear-nonlinear-Poisson (LNP) encoding model. This approach offers increased flexibility, robustness, and computational tractability compared to traditional methods (e.g., parametric forms, histograms, cubic splines). We then develop a framework for optimal experimental design under the GP-Poisson model using uncertainty sampling. This involves adaptively selecting stimuli according to an information-theoretic criterion, with the goal of characterizing the nonlinearity with as little experimental data as possible. Our framework relies on a method for rapidly updating hyperparameters under a Gaussian approximation to the posterior. We apply these methods to neural data from a color-tuned simple cell in macaque V1, characterizing its nonlinear response function in the 3D space of cone contrasts. We find that it combines cone inputs in a highly nonlinear manner. With simulated experiments, we show that optimal design substantially reduces the amount of data required to estimate these nonlinear combination rules.

上一篇:On Learning Discrete Graphical Models Using Greedy Methods

下一篇:Monte Carlo Value Iteration with Macro-Actions

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...