资源论文Maximum Covariance Unfolding: Manifold Learning for Bimodal Data

Maximum Covariance Unfolding: Manifold Learning for Bimodal Data

2020-01-08 | |  63 |   50 |   0

Abstract

We propose maximum covariance unfolding (MCU), a manifold learning algorithm for simultaneous dimensionality reduction of data from different input modalities. Given high dimensional inputs from two different but naturally aligned sources, MCU computes a common low dimensional embedding that maximizes the cross-modal (inter-source) correlations while preserving the local (intra-source) distances. In this paper, we explore two applications of MCU. First we use MCU to analyze EEG-fMRI data, where an important goal is to visualize the fMRI voxels that are most strongly correlated with changes in EEG traces. To perform this visualization, we augment MCU with an additional step for metric learning in the high dimensional voxel space. Second, we use MCU to perform cross-modal retrieval of matched image and text samples from Wikipedia. To manage large applications of MCU, we develop a fast implementation based on ideas from spectral graph theory. These ideas transform the original problem for MCU, one of semidefinite programming, into a simpler problem in semidefinite quadratic linear programming.

上一篇:Group Anomaly Detection using Flexible Genre Models

下一篇:A Machine Learning Approach to Predict Chemical Reactions

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...