transformer-tensorflow
TensorFlow implementation of Attention Is All You Need. (2017. 6)

Python 3.6
TensorFlow 1.8
hb-config (Singleton Config)
nltk (tokenizer and blue score)
tqdm (progress bar)
init Project by hb-base
. ├── config # Config files (.yml, .json) using with hb-config ├── data # dataset path ├── notebooks # Prototyping with numpy or tf.interactivesession ├── transformer # transformer architecture graphs (from input to logits) ├── __init__.py # Graph logic ├── attention.py # Attention (multi-head, scaled_dot_product and etc..) ├── encoder.py # Encoder logic ├── decoder.py # Decoder logic └── layer.py # Layers (FFN) ├── data_loader.py # raw_date -> precossed_data -> generate_batch (using Dataset) ├── hook.py # training or test hook feature (eg. print_variables) ├── main.py # define experiment_fn └── model.py # define EstimatorSpec
Reference : hb-config, Dataset, experiments_fn, EstimatorSpec
Train and evaluate with 'WMT German-English (2016)' dataset
Can control all Experimental environment.
example: check-tiny.yml
data: base_path: 'data/'
raw_data_path: 'tiny_kor_eng'
processed_path: 'tiny_processed_data'
word_threshold: 1
PAD_ID: 0
UNK_ID: 1
START_ID: 2
EOS_ID: 3model: batch_size: 4
num_layers: 2
model_dim: 32
num_heads: 4
linear_key_dim: 20
linear_value_dim: 24
ffn_dim: 30
dropout: 0.2train: learning_rate: 0.0001
optimizer: 'Adam' ('Adagrad', 'Adam', 'Ftrl', 'Momentum', 'RMSProp', 'SGD')
train_steps: 15000
model_dir: 'logs/check_tiny'
save_checkpoints_steps: 1000
check_hook_n_iter: 100
min_eval_frequency: 100
print_verbose: True
debug: False
slack: webhook_url: "" # after training notify you using slack-webhookdebug mode : using tfdbg
check-tiny is a data set with about 30 sentences that are translated from Korean into English. (recommend read it :) )
Install requirements.
pip install -r requirements.txt
Then, pre-process raw data.
python data_loader.py --config check-tiny
Finally, start train and evaluate model
python main.py --config check-tiny --mode train_and_evaluate
Or, you can use IWSLT'15 English-Vietnamese dataset.
sh prepare-iwslt15.en-vi.sh # download dataset python data_loader.py --config iwslt15-en-vi # preprocessing python main.py --config iwslt15-en-vi --mode train_and_evalueate # start training
After training, you can test the model.
command
python predict.py --config {config} --src {src_sentence}example
$ python predict.py --config check-tiny --src "안녕하세요. 반갑습니다."------------------------------------ Source: 안녕하세요. 반갑습니다. > Result: Hello . I'm glad to see you . <s> vectors . <s> Hello locations . <s> will . <s> . <s> you . <s>
✅ : Working
◽️ : Not tested yet.
✅ evaluate : Evaluate on the evaluation data.
◽️ extend_train_hooks : Extends the hooks for training.
◽️ reset_export_strategies : Resets the export strategies with the new_export_strategies.
◽️ run_std_server : Starts a TensorFlow server and joins the serving thread.
◽️ test : Tests training, evaluating and exporting the estimator for a single step.
✅ train : Fit the estimator using the training data.
✅ train_and_evaluate : Interleaves training and evaluation.
tensorboard --logdir logs
check-tiny example

Paper - Attention Is All You Need (2017. 6) by A Vaswani (Google Brain Team)
tensor2tensor - A library for generalized sequence to sequence models (official code)
Dongjun Lee (humanbrain.djlee@gmail.com)
上一篇: Speech-Transformer
还没有评论,说两句吧!
热门资源
DuReader_QANet_BiDAF
Machine Reading Comprehension on DuReader Usin...
ETD_cataloguing_a...
ETD catalouging project using allennlp
allennlp_extras
allennlp_extras Some utilities build on top of...
allennlp-dureader
An Apache 2.0 NLP research library, built on Py...
honk-honk-motherf...
honk-honk-motherfucker
智能在线
400-630-6780
聆听.建议反馈
E-mail: support@tusaishared.com