资源论文Image Parsing via Stochastic Scene Grammar

Image Parsing via Stochastic Scene Grammar

2020-01-10 | |  55 |   38 |   0

Abstract

This paper proposes a parsing algorithm for scene understanding which includes four aspects: computing 3D scene layout, detecting 3D objects (e.g. furniture), detecting 2D faces (windows, doors etc.), and segmenting background. In contrast to previous scene labeling work that applied discriminative classifiers to pixels (or super-pixels), we use a generative Stochastic Scene Grammar (SSG). This grammar represents the compositional structures of visual entities from scene categories, 3D foreground/background, 2D faces, to 1D lines. The grammar includes three types of production rules and two types of contextual relations. Production rules: (i) AND rules represent the decomposition of an entity into sub-parts; (ii) OR rules represent the switching among sub-types of an entity; (iii) SET rules represent an ensemble of visual entities. Contextual relations: (i) Cooperative “+” relations represent positive links between binding entities, such as hinged faces of a object or aligned boxes; (ii) Competitive “-” relations represents negative links between competing entities, such as mutually exclusive boxes. We design an efficient MCMC inference algorithm, namely Hierarchical cluster sampling, to search in the large solution space of scene configurations. The algorithm has two stages: (i) Clustering: It forms all possible higher-level structures (clusters) from lower-level entities by production rules and contextual relations. (ii) Sampling: It jumps between alternative structures (clusters) in each layer of the hierarchy to find the most probable configuration (represented by a parse tree). In our experiment, we demonstrate the superiority of our algorithm over existing methods on public dataset. In addition, our approach achieves richer structures in the parse tree.

上一篇:Reconstructing Patterns of Information Diffusion from Incomplete Observations

下一篇:The Impact of Unlabeled Patterns in Rademacher Complexity Theory for Kernel Classifiers

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...