资源论文Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries

Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries

2020-01-10 | |  83 |   39 |   0

Abstract

Learning sparse representations on data adaptive dictionaries is a state-of-the-art method for modeling data. But when the dictionary is large and the data dimension is high, it is a computationally challenging problem. We explore three aspects of the problem. First, we derive new, greatly improved screening tests that quickly identify codewords that are guaranteed to have zero weights. Second, we study the properties of random projections in the context of learning sparse representations. Finally, we develop a hierarchical framework that uses incremental random projections and screening to learn, in small stages, a hierarchically structured dictionary for sparse representations. Empirical results show that our framework can learn informative hierarchical sparse representations more efficiently.

上一篇:Inverting Grice’s Maxims to Learn Rules from Natural Language Extractions

下一篇:Sparse Estimation with Structured Dictionaries

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...