资源论文Structured Learning of Gaussian Graphical Models

Structured Learning of Gaussian Graphical Models

2020-01-13 | |  62 |   48 |   0

Abstract

We consider estimation of multiple high-dimensional Gaussian graphical models corresponding to a single set of nodes under several distinct conditions. We assume that most aspects of the networks are shared, but that there are some structured differences between them. Specifically, the network differences are generated from node perturbations: a few nodes are perturbed across networks, and most or all edges stemming from such nodes differ between networks. This corresponds to a simple model for the mechanism underlying many cancers, in which the gene regulatory network is disrupted due to the aberrant activity of a few specific genes. We propose to solve this problem using the perturbed-node joint graphical lasso, a convex optimization problem that is based upon the use of a row-column overlap norm penalty. We then solve the convex problem using an alternating directions method of multipliers algorithm. Our proposal is illustrated on synthetic data and on an application to brain cancer gene expression data.

上一篇:Exponential Concentration for Mutual Information Estimation with Application to Forests

下一篇:Stochastic Gradient Descent with Only One Projection

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...