资源论文Multi-scale Hyper-time Hardware Emulation of Human Motor Nervous System Based on Spiking Neurons using FPGA

Multi-scale Hyper-time Hardware Emulation of Human Motor Nervous System Based on Spiking Neurons using FPGA

2020-01-13 | |  54 |   41 |   0

Abstract

Our central goal is to quantify the long-term progression of pediatric neurological diseases, such as a typical 10-15 years progression of child dystonia. To this purpose, quantitative models are convincing only if they can provide multi-scale details ranging from neuron spikes to limb biomechanics. The models also need to be evaluated in hyper-time, i.e. significantly faster than real-time, for producing useful predictions. We designed a platform with digital VLSI hardware for multiscale hyper-time emulations of human motor nervous systems. The platform is constructed on a scalable, distributed array of Field Programmable Gate Array (FPGA) devices. All devices operate asynchronously with 1 millisecond time granularity, and the overall system is accelerated to 365x real-time. Each physiological component is implemented using models from well documented studies and can be flexibly modified. Thus the validity of emulation can be easily advised by neurophysiologists and clinicians. For maximizing the speed of emulation, all calculations are implemented in combinational logic instead of clocked iterative circuits. This paper presents the methodology of building FPGA modules emulating a monosynaptic spinal loop. Emulated activities are qualitatively similar to real human data. Also discussed is the rationale of approximating neural circuitry by organizing neurons with sparse interconnections. In conclusion, our platform allows emulating pathological abnormalities such that motor symptoms will emerge and can be analyzed. It compels us to test the origins of childhood motor disorders and predict their long-term progressions.

上一篇:A Bayesian Approach for Policy Learning from Trajectory Preference Queries

下一篇:Sparse Approximate Manifolds for Differential Geometric MCMC

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...