资源论文Continuous Relaxations for Discrete Hamiltonian Monte Carlo

Continuous Relaxations for Discrete Hamiltonian Monte Carlo

2020-01-13 | |  68 |   38 |   0

Abstract

Continuous relaxations play an important role in discrete optimization, but have not seen much use in approximate probabilistic inference. Here we show that a general form of the Gaussian Integral Trick makes it possible to transform a wide class of discrete variable undirected models into fully continuous systems. The continuous representation allows the use of gradient-based Hamiltonian Monte Carlo for inference, results in new ways of estimating normalization constants (partition functions), and in general opens up a number of new avenues for inference in difficult discrete systems. We demonstrate some of these continuous relaxation inference algorithms on a number of illustrative problems.

上一篇:Multiresolution analysis on the symmetric group

下一篇:Augment-and-Conquer Negative Binomial Processes

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...