资源论文Convolutional-Recursive Deep Learning for 3D Object Classification

Convolutional-Recursive Deep Learning for 3D Object Classification

2020-01-13 | |  65 |   29 |   0

Abstract

Recent advances in 3D sensing technologies make it possible to easily record color and depth images which together can improve object recognition. Most current methods rely on very well-designed features for this new 3D modality. We introduce a model based on a combination of convolutional and recursive neural networks (CNN and RNN) for learning features and classifying RGB-D images. The CNN layer learns low-level translationally invariant features which are then given as inputs to multiple, fixed-tree RNNs in order to compose higher order features. RNNs can be seen as combining convolution and pooling into one efficient, hierarchical operation. Our main result is that even RNNs with random weights compose powerful features. Our model obtains state of the art performance on a standard RGB-D object dataset while being more accurate and faster during training and testing than comparable architectures such as two-layer CNNs.

上一篇:MAP Inference in Chains using Column Generation

下一篇:Collaborative Gaussian Processes for Preference Learning

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...