资源论文Learning curves for multi-task Gaussian process regression

Learning curves for multi-task Gaussian process regression

2020-01-13 | |  70 |   39 |   0

Abstract

We study the average case performance of multi-task Gaussian process (GP) regression as captured in the learning curve, i.e. the average Bayes error for a chosen task versus the total number of examples n for all tasks. For GP covariances that are the product of an input-dependent covariance function and a free-form intertask covariance matrix, we show that accurate approximations for the learning curve can be obtained for an arbitrary number of tasks T . We use these to study the asymptotic learning behaviour for large n. Surprisingly, multi-task learning can be asymptotically essentially useless, in the sense that examples from other tasks help only when the degree of inter-task correlation, 图片.png is near its maximal value 图片.png = 1. This effect is most extreme for learning of smooth target functions as described by e.g. squared exponential kernels. We also demonstrate that when learning many tasks, the learning curves separate into an initial phase, where the Bayes error on each task is reduced down to a plateau value by “collective learning” even though most tasks have not seen examples, and a final decay that occurs once the number of examples is proportional to the number of tasks.

上一篇:Hamming Distance Metric Learning

下一篇:Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...