资源论文Synchronization can Control Regularization in Neural Systems via Correlated Noise Processes

Synchronization can Control Regularization in Neural Systems via Correlated Noise Processes

2020-01-13 | |  50 |   37 |   0

Abstract

To learn reliable rules that can generalize to novel situations, the brain must be capable of imposing some form of regularization. Here we suggest, through theoretical and computational arguments, that the combination of noise with synchronization provides a plausible mechanism for regularization in the nervous system. The functional role of regularization is considered in a general context in which coupled computational systems receive inputs corrupted by correlated noise. Noise on the inputs is shown to impose regularization, and when synchronization upstream induces time-varying correlations across noise variables, the degree of regularization can be calibrated over time. The resulting qualitative behavior matches experimental data from visual cortex.

上一篇:On Lifting the Gibbs Sampling Algorithm

下一篇:Weighted Likelihood Policy Search with Model Selection

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...