资源论文Efficient high-dimensional maximum entropy modeling via symmetric partition functions

Efficient high-dimensional maximum entropy modeling via symmetric partition functions

2020-01-13 | |  55 |   49 |   0

Abstract

Maximum entropy (MaxEnt) modeling is a popular choice for sequence analysis in applications such as natural language processing, where the sequences are embedded in discrete, tractably-sized spaces. We consider the problem of applying MaxEnt to distributions over paths in continuous spaces of high dimensionality— a problem for which inference is generally intractable. Our main contribution is to show that this intractability can be avoided as long as the constrained features possess a certain kind of low dimensional structure. In this case, we show that the associated partition function is symmetric and that this symmetry can be exploited to compute the partition function efficiently in a compressed form. Empirical results are given showing an application of our method to learning models of high-dimensional human motion capture data.

上一篇:GenDeR: A Generic Diversified Ranking Algorithm

下一篇:Slice Normalized Dynamic Markov Logic Networks

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...