资源论文A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function

A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function

2020-01-13 | |  58 |   57 |   0

Abstract

We propose a novel Bayesian approach to solve stochastic optimization problems that involve finding extrema of noisy, nonlinear functions. Previous work has focused on representing possible functions explicitly, which leads to a two-step procedure of first, doing inference over the function space and second, finding the extrema of these functions. Here we skip the representation step and directly model the distribution over extrema. To this end, we devise a non-parametric conjugate prior based on a kernel regressor. The resulting posterior distribution directly captures the uncertainty over the maximum of the unknown function. Given t observations of the function, the posterior can be evaluated efficiently in time O(t2 ) up to a multiplicative constant. Finally, we show how to apply our model to optimize a noisy, non-convex, high-dimensional objective function.

上一篇:Scalable nonconvex inexact proximal splitting

下一篇:Distributed Probabilistic Learning for Camera Networks with Missing Data

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...