资源论文Discriminatively Trained Sparse Code Gradients for Contour Detection

Discriminatively Trained Sparse Code Gradients for Contour Detection

2020-01-13 | |  47 |   45 |   0

Abstract

Finding contours in natural images is a fundamental problem that serves as the basis of many tasks such as image segmentation and object recognition. At the core of contour detection technologies are a set of hand-designed gradient features, used by most approaches including the state-of-the-art Global Pb (gPb) operator. In this work, we show that contour detection accuracy can be significantly improved by computing Sparse Code Gradients (SCG), which measure contrast using patch representations automatically learned through sparse coding. We use K-SVD for dictionary learning and Orthogonal Matching Pursuit for computing sparse codes on oriented local neighborhoods, and apply multi-scale pooling and power transforms before classifying them with linear SVMs. By extracting rich representations from pixels and avoiding collapsing them prematurely, Sparse Code Gradients effectively learn how to measure local contrasts and find contours. We improve the F-measure metric on the BSDS500 benchmark to 0.74 (up from 0.71 of gPb contours). Moreover, our learning approach can easily adapt to novel sensor data such as Kinect-style RGB-D cameras: Sparse Code Gradients on depth maps and surface normals lead to promising contour detection using depth and depth+color, as verified on the NYU Depth Dataset.

上一篇:Learning High-Density Regions for a Generalized Kolmogorov-Smirnov Test in High-Dimensional Data

下一篇:Ensemble weighted kernel estimators for multivariate entropy estimation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...