资源论文Entropy Estimations Using Correlated Symmetric Stable Random Projections

Entropy Estimations Using Correlated Symmetric Stable Random Projections

2020-01-13 | |  40 |   42 |   0

Abstract

Methods for efficiently estimating Shannon entropy of data streams have important applications in learning, data mining, and network anomaly detections (e.g., the DDoS attacks). For nonnegative data streams, the method of Compressed Counting (CC) [11, 13] based on maximally-skewed stable random projections can provide accurate estimates of the Shannon entropy using small storage. However, CC is no longer applicable when entries of data streams can be below zero, which is a common scenario when comparing two streams. In this paper, we propose an algorithm for entropy estimation in general data streams which allow negative entries. In our method, the Shannon entropy is approximated by the finite difference of two correlated frequency moments estimated from correlated samples of symmetric stable random variables. Interestingly, the estimator for the moment we recommend for entropy estimation barely has bounded variance itself, whereas the common geometric mean estimator (which has bounded higher-order moments) is not sufficient for entropy estimation. Our experiments confirm that this method is able to well approximate the Shannon entropy using small storage.

上一篇:Optimal Neural Tuning Curves for Arbitrary Stimulus Distributions: Discrimax, Infomax and Minimum lp loss

下一篇:Towards a learning-theoretic analysis of spike-timing dependent plasticity

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...