资源论文Cocktail Party Processing via Structured Prediction

Cocktail Party Processing via Structured Prediction

2020-01-13 | |  54 |   54 |   0

Abstract

While human listeners excel at selectively attending to a conversation in a cocktail party, machine performance is still far inferior by comparison. We show that the cocktail party problem, or the speech separation problem, can be effectively approached via structured prediction. To account for temporal dynamics in speech, we employ conditional random fields (CRFs) to classify speech dominance within each time-frequency unit for a sound mixture. To capture complex, nonlinear relationship between input and output, both state and transition feature functions in CRFs are learned by deep neural networks. The formulation of the problem as classification allows us to directly optimize a measure that is well correlated with human speech intelligibility. The proposed system substantially outperforms existing ones in a variety of noises.

上一篇:Causal discovery with scale-mixture model for spatiotemporal variance dependencies

下一篇:Fiedler Random Fields: A Large-Scale Spectral Approach to Statistical Network Modeling

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...